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Abstract. We consider a convex multiplicative programming problem of the form 

min{ f, (x) &(x) :x E X} , 

where X is a compact convex set of R” and f,, f, are convex functions which have nonnegative values 
over X. 

Using two additional variables we transform this problem into a problem with a special structure in 
which the objective function depends only on two of the (n + 2) variables. Following a decomposition 
concept in global optimization we then reduce this problem to a master problem of minimizing a 
quasi-concave function over a convex set in R:. This master problem can be solved by an outer 
approximation method which requires performing a sequence of simplex tableau pivoting operations. 
The proposed algorithm is finite when the functions f,, (i = 1,2) are affine-linear and X is a polytope 
and it is convergent for the general convex case. 

Key words. Multiplicative programming, global optimization, decomposition, outer approximation. 

1. Introduction 

We are dealing with a problem of minimizing the product of two convex functions 
over a compact convex set in R” (convex multiplicative programming problem) 
which we denote by (MP). 

In Swarup (1966), Bettor and Dahl (1974), Schaible (1976), Aneja et al. 
(1984), and Pardalos (1988) a special class of (MP) when the objective function is 
a product of two linear functions and the feasible set is a polytope (the linear 
case) was considered in connection with solving certain classes of quadratic 
programming problems. Efficient methods for the linear case which were estab- 
lished based on different parametric approaches are due to Gabasov and Kirillova 
(1980), Konno and Kuno (1989), and Tuy and Tam (1990). In Kuno and Konno 
(1990) a parametric algorithm was also applied to solving the general convex case. 

In recent years a new direction of mathematical programming called.global 
optimization has attracted the attention of many mathematicians as well as 
engineers and economists. Results in this field provide algorithms for solving a 
great variety of problems for which the standard methods fail. An excellent 
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representation of the most important deterministic methods in global optimization 
is given in the book of Horst and Tuy (1990). 

It is the purpose of the present article to propose a new method for solving the 
convex multiplicative programming problem by applying certain global optimiza- 
tion techniques. The main idea of this method is to transform problem (ME’) into 
a problem in Rn+2 whose objective function depends only upon two of the y1+ 2 
variables. The special structure of the transformed problem suggests reducing it to 
a so-called muster problem in iwt that can be solved by a simple outer approxi- 
mation procedure even when its feasible set is not explicitly available. 

Computational experiments show that this method is quite efficient. The main 
advantages affecting numerical efficiency are: 

(a) within the outer approximation procedure for solving the master problem in 
rWf the methods discussed in Horst et al. (1988) for computing all new 
vertices of a polytope generated from a given polytope by an affine cut can 
be very efficiently applied and 

(b) the construction of cutting planes requires mainly only the well-known 
simplex tableau pivoting operations. 

The paper is organized as follows. In Section 2, a conceptual algorithm is 
established. This basic algorithm is then implemented for the linear case and the 
convex case in Sections 3 and 4, respectively. Illustrative examples and computa- 
tional experiments are reported in Section 5. In Section 6 we discuss an extension 
of our method for solving a generalized multiplicative programming problem of 
minimizing the product of more than two convex functions over a compact convex 
set. 

2. The Basic Algorithm 

Consider the following Convex Multiplicative Programming Problem 

min h (4 . fi (4 
(MP) s.t. gj(x)CO,i=l,...,m 

X==O 

where fi, f2 and gi, (i = 1, . . . , m) are convex functions on R”. 
Defining 

g(x) = max{ g,(x): i = 1, . . . , m} (2.1) 

we obtain a convex function g(x), and the feasible set of problem (MP), denoted 
by X, can be formulated as 

X:={xElTr: g(x)~0,x~0} (2.2) 

One usually assumes that the set X is bounded and fi, f2 are nonnegative in X. In 
fact, we can assume without loss of generality that 
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fr(x)*O and f2(x)s0 for allxE[W”, (2.3) 

because, under the assumption that fi , f, are nonnegative in X, replacing fi and f2 
by the convex functions max{O; jr(x)} and max{O; f2(x)}, respectively, does not 
have any influence on the solutions of problem (MP). 

From assumption (2.3), by using two additional variables yl, y2, we can 
transform problem (MP) into the following problem: 

min Y, . Yz (2.4) 

(API 

s.t. g(x) a0 (2.5) 

-Y, +fi(x) so (2.6) 

-Y2 + f,(x) a0 (2.7) 

x 20 (2.8) 

Y = (Yl, Y21T 20 (2.9) 

Let us denote the convex feasible set of (AP) by R. 
Although problem (AP) has now y1+ 2 variables, the above transformation is 

worthwhile since the objective function of (AP) does only depend on the two 
variables y r, yz. This special structure suggests applying a decomposition concept 
in global optimization that reduces (AP) to the following master problem in lw2 
(cf. Horst and Tuy (1990)). 

(CP> min{ y, . y2 : y E D C R”} 

where 

D : = { y 3 0: (3x 3 0) such that (2.5)-(2.7) are fulfilled} (2.10) 

Since the set D, being the projection of the convex set R on rW”, is convex and the 
function F(y) = y , * y, is quasi-concave (as shown in Konno and Kuno (1989)), 
we see that (CP) is an ordinary concave minimization problem. Moreover, we 
have 

PROPOSITION 1. (a) The set of optimal solutions of problem (CP) is bounded. 
(b) If y” is an optimal solution of (CP), then every point x* E R” satisfying 
(y*, x*) E 0 is an optimal solution of (MP). 

Proof. (a) It is easy to see that each optimal solution (y, x) of problem (AP) 
satisfies yj = A(x), i = 1,2. But fi(i = 1,2) are convex functions on R”, and hence 
bounded over the bounded set X. Therefore, the set of all optimal solutions of 
(AP) is bounded, and hence its projection on y-space is bounded as well. 

(b) Problem (AP) can be rewritten as minxED min{ y1 * y, : ( y, x) E R}. There- 
fore, if y” is an optimal solution of (CP) and x* E [w” such that (y*, x*) E a, then 
(y”, x*) is obviously an optimal solution of problem (AP) which implies that x* 
is an optimal solution of (MP). 0 
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The above consideration suggests to solve the concave minimization problem 
(CP), instead of the original problem (MP). As discussed in Horst and Thoai 
(1989), for concave programming problems in small dimensions it is suitable to 
apply the following Outer Approximation Algorithm. 

ALGORITHM 1. 
1~itiaZization. Construct a cube 

so = {y E R2 : 0 d yi =z yj < + w, i = 1,2} (2.11) 

which contains the bounded set of optimal solutions to (CP). Let V(S’) denote 
the vertex set of So. 
Set k+-0. 

Iteration k. Solve min{ y1 . yz : y E S”} = min{ y, * y,: y E V(Sk)} obtaining a so- 
lution yk. 

k. 1. If yk E D, then the algorithm terminates yielding yk as an optimal solution of 

(CP). 
k.2. Otherwise, construct an affine function Zk( y) = c”y + ct such that Zk( y”) > 0 

and Ik(y) < 0 for all y E D. Build Sk+’ =Skfl{yE[W2: Z,(y)cO}. Compute 
the vertex set V(Sk+l ) (from V(Sk)) and go to iteration k + 1. 

When implementing the above procedure we have to perform the following basic 
operations at each iteration k: 

(a) the computation of the set V(Sktl) from V(Sk). 
(b) the check whether yk belongs to D, and, if not, the construction of a cut 

zk( Y>. 

Moreover, when Algorithm 1 has detected an optimal solution yk of (CP) we have 
to deduce an optimal solution of the original problem (MP) from yk. 

In general (a) is a troublesome problem for the number of vertices of Sk can 
grow exponentially. However, as shown in Horst et al. (1988), if this problem is 
considered in a space of small dimension such as [wq with q s 20, then the 
algorithms discussed there can be regarded as relatively efficient. In connection 
with our problem where q = 2 we shall see later in Section 5 that the polytopes Sk 
usually have a few vertices and hence the computation of the sets V(Sk) only 
requires a negligible amount of time. 

The basic operations (b) will be dealt with in the next two sections for the case 
thatthefunctionsA,(i=l, 2)andg,,(i=l,..., m) are all affine-linear and for 
the general convex case, respectively. 

3. The Linear Case 

In this section we consider the linear case of problem (MP), i.e., 
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where q E iw”, pi E [w(i = 1,2), A” is an (& X n)-matrix and 6” E [w’. (As usual we 
denote the transpose of a vector (matrix) by T’). 

The corresponding problem (AP) that we introduced in Section 2 becomes 

min y1 . y2 

CAP) s.t. By + Ax G b 

yao 

X20 

where B is an (m X 2)-matrix, A an (m X n)-matrix and b E [w” with m = KG + 2. 
More precisely we have 

(3.1) 

Thus, the feasible set of the concave minimization problem (CP) has here the 
form 

D:= {y~0:(3x>O)By~b-Ax}. (3.2) 

The following proposition provides a representation of D which we use to 
implement Algorithm 1 for the linear case. For a related representation, see 
Lemma 1 in Tuy (1985). 

Let e = (I, . . . , 1)rE 1w”. 

PROPOSITION 2. The set D defined by (3.2) is a polyhedral convex set 
consisting of ail points y a 0 satisfying 

(LP> max{(By - b)‘z : -ATz G 0, eTz s 1, z 3 0} = 0. 

Proof. Since the feasible set of problem (AP) is a polyhedral convex set and D 
is its image under a linear transformation from [Wn+2 to IJ!‘, it follows that D is a 
polyhedral convex set as well (cf. Rockafellar (1970), Theorem 19.3). Now, let us 
assert that the set D consists of all points y 3 0 such that 

min{t: -Ax + te SBy-b,xaO,t&O}=O (3.3) 
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Indeed, let y B 0 satisfy (3.3). Then there exists a point x 2 0 such that -Ax + 
te 2 By - b and t = 0. This implies by definition that y E D. Conversely, for each 
y E D we have, from the definition of D: (3x 3 0) By G b - Ax + te for all t 2 0, 
which implies (3.3). 

Finally, it is easy to verify that the linear program (LP) is the dual of (3.3) and 
hence the proposition follows. 0 

The above assertion provides a hyperplane which separates the set D from an 
arbitrary point outside D. 

PROPOSITION 3. For each point y E lR:\D there exists a vertex Z of the polytope 

Q={z: -Arz<O,eTz<l,z&O}. 

such that the afine function 

l(y) = iTBy - Z=b 

satisfies Z(y) d 0 for all y E D, and l( 7) > 0. 
Proof. Since for each y s 0 the linear function (By - b)Tz attains its maximum 

at a vertex of the polytope Q, and this maximum, being equal to the optimal 
value of the dual problem in (3.3), is nonnegative, it follows from Proposition 2 
that there exists a vertex (basic feasible point) Z of Q satisfying 

Z(y) = Z’By - ZTb = (By - b)% 

d max{(By - b)Tz : -A’zGO,eTzG1,z>O}=Ofor allyED 

and 

O<Z(j)=(By-b)7.5~max{(Bj-b)Tz: -ATz~O,eTzdl,z~O} 

for y$?‘D. q 

By means of the aboztwo propositions we can establish the following algorithm 
for the linear case (ME’). 

ALGORITHM 2. 
Initialization. Construct a cube So and its vertex set V(S’) as in Algorithm 1. Set 

k-0. 
Zterution k. Solve min{ yi . yZ: y E V(Sk)} obtaining a solution yk. Apply the 

simplex method to the following linear program: 

cLpk) max{(Byk - b)% : -AT2 s 0, e’z d 1, z. B 0) . 

k. 1. If a basic feasible point zk with (Byk - b)= k z > 0 is obtained, then construct 
the affine function 

Z,(y) = (z~)~B~ - (zk)rb . 
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Set Sk+’ = Sk n {y E [w”: Ik(y) GO}. Compute V(Sk+‘) and go to iteration 
k+ 1. 

k.2. Otherwise, the optimal value of (LP,) is equal to zero. Then yk ED 
(Proposition 2), and hence yk solves (CP). The algorithm terminates. 

PROPOSITION 4. Algorithm 2 terminates after a finite number of iterations. 
Proof. Since for all k the common feasible set of linear programs (LP,) is a 

polytope having a finite number of vertices, we only need to show that, whenever 
the algorithm does not terminate at iteration k, the point zk must be different 
from zq for all 9 = 0, . . . , k - 1. Since Sk = So n {y : Z,(y) 8 0, 4 = 0, . . . , k - 
l}, and yk E Sk we have Z,(y”) = (Byk - b)‘zq < 0 for all q = 0, . . . , k - 1. 
Therefore, zk # zq for q = 0, . . . , k - 1 because (Byk - b)Tzk > 0. q 

Let Algorithm 2 terminate at some iteration k with yk E D. We show how we can - 
obtain an optimal solution of (MP) from yk. We have 

max{(Byk - b)Tz : -ATzdO, erz61, zaO}=O. 

Assume further that the last row of last simplex tableau has the form 

Z* 
- 
Cl,. . . ) cm+n+1 

with the optimal value z*=O and ciao, j=l,...,m+n+l. (Note that the 
matrix AT has y1 rows and m columns). 

From the duality theory of linear programming it follows that the point 
(xk, tk)ERn+l with x:= -C,+i, i= 1,. . . ,n and tk= -C,+,+i is an optimal 
solution of the dual problem and we have 

min{t: -Ax+te>By”-b,xaO, tSO}=O. 

This implies that ( yk, x”) is a feasible point to problem AT and hence it follows 
from Proposition 1 that xk is an optimal solution of problem (i@). 

It is worth noting that the main operation in Algorithm 2 is solving the linear 
programs (LP,). Since each of these programs differs from others only in the 
objective function, these programs can be solved efficiently by successively 
pivoting the simplex tableaux which correspond to the polytope {z : -ATz d 0, 
eTz<l, z~O}CR”. 

Algorithm 2 is illustrated in Section 5, Example 1. 

4. The Convex Case 

In this section we are dealing with the general convex multiplicative programming 
problem (MP) as formulated in Section 2. 

The method which we propose here can be regarded as a natural extension of 
the above method for the linear case. The main idea of going from Algorithm 2 to 
an algorithm for the convex case can be explained as follows. 
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The convex feasible set R of problem (AP) will be iteratively approximated by 
a sequence of convex polyhedral sets, say no, KI’, . . , such that R” > fl’ 1. . * > 
R. Each polyhedral set LRk is defined by a system of the form 

Bky + Akx G bk , y,xso (4.1) 

where y E [w’, x E W and Bk, Ak, bk are of appropriate sizes. 
Let Sk be a polytope that contains the projection of the optimal solution set of 

problem (AP) on the y-space, and let yk be an optimal solution of problem 
min{ y, . y2 : y E V(Sk)}. (Recall that by V(S) we always denote the vertex set of 
a polytope S.) Furthermore, let tk be the optimal value of the linear subproblem 

CL’,) max{(Bkyk - bk)%: (-Ak)Tz ~0, eTz s 1, z aO> 

and (xk, tk) an optimal solution of its dual problem 

min{t: -Akx+te>Bkyk-b”, x, t 2 0) 

The following three cases can occur: 

CASE 1. tk = 0 and ( yk, x”) E R, i.e. (y”, x”) satisfies the constraints (2.5)-(2.9) 
in problem (AP). In this case, it follows from Proposition 2 that yk E Dk, where 
Dk denotes the projection of ok on y-space and ( yk, x”) E 0’. Since Rk > a, it 
follows that .rk is an optimal solution of the original problem (MP). 

CASE 2. tk = 0 and ( yk, x”) $?‘a. To continue the procedure in this case we shall 
construct a set fink+’ by cutting off a part of LRk which contains the point ( yk, x”). 
More precisely, we construct an affine linear function Lk( y, x) such that 

Lk(yk,xk)>O and L,(y,x)sO V(y,x)~fl (4.2) 

The set ok+’ is then generated by adding the constraint Lk( y, x) 4 0 to the system 
defining a’. 

CASE 3. tk >O. From Proposition 2 we thus have y”@ Dk and hence 
( yk, x”) $0. In this case we shall construct two cutting planes. The one 
according to Proposition 3 cuts off yk to build Sktl and the other is used to 
construct Qk+l as in Case 2. 

Now, we are in a position to present an algorithm for solving the general convex 
multiplicative programming problem. 

ALGORITHM 3. 
Initialization. Construct So and V(S’) as in Algorithm 2. Construct a convex 

polyhedral set 0’ that contains fi and is defined by a system of the form (4.1) 
with k = 0. Solve min{ y, . y2 : y E V(S”)} obtaining y’: 
Set k+O. 
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Iteration k. Solve linear subproblem (LP,) obtaining a basic optimal solution z! 
and an optimal solution (xk, tk> of its dual problem (as in Section 3). 

k.1. If tk = 0 and ( yk, x”) E R, then xk is an optimal solution of problem (MP). 
The algorithm terminates. 

k.2. If t” =0 and (y”, x”)$ZKl, then set Sk+’ *Sk, yk’l tyk and go to k.4. 
k.3. If tk > 0, then construct Zk( y) = (zk)‘Bky - (zk)‘bk; 

set Sk+l =Skl-l{yER2: Zk(Y)dO}, compute V(Sk+‘), and solve min{y, . 
y,: y E V(Skf’)} to obtain yktl. 

k.4. Choose L,(y, x) satisfying (4.2). To construct a’+‘, determine Bkcl, Ak” 
and bk+l by adding the constraint Lk( y, x) d 0 to the system defining Rk and go 
to iteration k + 1. 

Before proving convergency of the above algorithm we give some details on 
implementation. 

At the beginning of the procedure a first polyhedral convex set a0 = {( y, x) E 
[w n+2 : Boy + Aox d b”, (y, x) b 0} can be defined by the following system: 

e’x s/3 
-yl + (a l.O)=x d pl,o 
-y2 + (c2.0)Tx < p2,0 (4.3) 

y,xzo 

where e = (1, . . , , 1)’ E R”, /3 is a number (large enough) such that 

XCX”:={xER”:x20,eTx~~} (4.4) 

with X being the bounded convex feasible set of problem (MP) as defined in 
(W, Q ‘*‘(i = 1,2) are subgradients of h(i = 1,2), respectively, at some point 
x0 E R:, (e.g., x0 = 0), and pi,o = (~‘)~a’,’ -fi(x”) (i = 1,2). 

At iteration k, assume that (y”, x”) $Ln, i.e., max{ g(x”); -yt +fi(xk); -yt + 
f2(xk)} > 0. Define h( y, x) = max{ g(x”); -yr + f,(x”); -yi + f2(xk)}. Then 
h( y, x) is obviously a convex function and we can construct an affine linear 
function Lk( y, x) by 

I 

-yi + (ak)*x + A(x”) - (ak)=xk , if h( yk, x”) = -yl +x.(x”) 
for an iE{1,2} (4.5) 

(a”)‘x + g(x”) - (a”)‘x” ) if h( yk, x”) = g(x”) 

where ok denotes a subgradient at point xk of A(x) if h( yk, x”) = -yr +x(x”) for 
an i E { 1,2}, or of g(x) otherwise. 

From the general theory of outer approximation methods it is easy to verify 
that Lk( y, x) satisfies condition (4.2) (cf., e.g., Horst et al. (1987), Horst and Tuy 
(1990)). Thus, the set fink+’ is determined by adding the constraint Lk( y, x) d 0 to 
the system defining ok. 
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PROPOSITION 5. Assume that throughout Algorithm 3 the sets fik, k 2 0 are 
constructed as described above. Then, when the algorithm does not terminate 
after a finite number of iterations, it generates an infinite sequence { ( yk, x”)} , 
every accumulation point ( y”, x*) of which satisfies that y* is an optimal solution 
of problem (CP) while x* is an optimal solution of the original problem (MP). 

Proof. At each iteration k the algorithm generates a point ( yk, ,Y”). Therefore, 
if the algorithm never terminates it must generate an infinite sequence { ( yk, x”)} . 
Let ( y*, x*) be an accumulation point of this sequence. (Note that (y”, x*) 
exists, since yk E So and xk E X0 for all k, where So and X0 are compact sets 
defined by (2.11) and (4.4), respectively). 

If for each k the cutting function is constructed as in (4.5), then it follows from 
an outer approximation concept (cf., e.g., Horst et al. (1987), Horst and Tuy 
(1990)) that ( y *, x*) E a. Therefore y * E D, which implies that y * solves the 
concave programming problem (CP), and hence, from Proposition 1, that x* 
solves the original problem (MP). 0 

An illustrative example of Algorithm 3 is given in Section 5 (Example 2). 

5. Illustrative Examples and Computational Experiments 

Next, we give two examples to illustrate Algorithms 2 and 3, respectively. 

EXAMPLE 1. We consider a linear multiplicative programming problem with 
following input data. 

rii = 8, 
i= 4, 

A”= 

g= 

’ .488509 .063565 
- .324014 - .501754 

,445225 - .346896 
- .202821 .647361 
- .886420 - .a02444 
- .515399 - .424820 
- s91515 .060581 

, .423524 .940496 

3.562809 
- .052215 

.427920 
.840950 

-1.353686 
2.137251 

- .290987 
.373620 

.945686 
- .719204 

.637939 
.920135 

- .305441 
.897498 

- .427365 
- .437944 

.210704 ’ 
.099562 

- .257623 
- .983091 
-.180123 

.187268 

.579388 
- .742941, 



C O N V E X  M U L T I P L I C A T I V E  P R O G R A M M I N G  P R O B L E M  

A first cube in R': 
s ~ = { ~ E [ w ~ : o < ~ ~ ~ ~ ~ ~ ,  i = 1 , 2 ]  

**Iteration 0: 
Current best outer approximation point in y-space: 
yo = (.000000, .oooooo)T, 
F(y0) = y;. y; = .000000, 
A basic optimal solution of linear subproblem (LP,): 
zo = (0.0, 0.0, 0.0, 0.0, .448213, 0.0, .020334, 0.0, S31453, o.o)', 
Optimal value of linear subproblem: .728404, 
Cutting plane: 
I,(y) = -.531453y, + .7284O4 G 0 

**Iteration 1: 
Current best outer approximation point in y-space: 
y ' = (100.000000, .oooooo)T, 
~ ( y ' )  = .OOOOOO, 
A basic optimal value of linear subproblem (LP,): 
z1 = (0.0, 0.0, 0.0, 0.0, .229767, 0.0, 0.0, .154495, 0.0, . 61573~)~ ,  
Optimal value of linear subproblem: .309925, 
Cutting plane: 
l,(y) = - .615738y2 + .309925 G 0 

""Iteration 2: 
Current best outer approximation point in y-space: 
y' = (1.370590, .503340)~, 
~ ( y ~ )  = .689872, 
A basic optimal value of linear subproblem (LP'): 
z2 = (0.0, 0.0, .082410, 0.0, .258050, 0.0, 0.0, .220977, 0.0, .438563) T, 
Optimal value of linear subproblem: .051071, 
Cutting plane: 
I,(y) = - .438563y2 + .271817 < 0 

This problem was solved after 6 iterations. 
Optimal solution of the concavc minimization problem in y-space: 

Optimal solution of the original linear multiplicative programming problem: 

Optimal function value: 390193. 
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The maximal number of vertices of a polytope in R2 generated throughout the 
algorithm was 6. 

EXAMPLE 2. We consider a convex multiplicative programming problem of 
form (MP) in R2 with 

fl(X) = (x, + 2x, + 3x2 + o.q2 ) 

f,(x) = 0.1 exp( x1 + 2 + ? + 0.5 
) 

g,(x)= x,+;x,+;x3 
1.5 

- 4.2, 

2 

g2(x) = ( x,+2+2-2 
1 

- 3.5 ) 

&(X) = -x1 + 3, 
&(X) = -x2 + 4, 
g5(x) = -x3 + 3. 

We set 

g(x) = max{ g,(x) : i = 1, . . . ,5} . 

A first cube in R2: 
s”={yER’:Oay,~lOO, i=l, 2). 
Computing a subgradient off, and f,, respectively, at point 0 we determine a first 
polyhedral set a0 by: 

Xl + x2 + x3 d 10. 
-y, + 0.4x, + 0.8x2 + 1.2x, d -0.04 

-y, + 0.164872x, + 0.082436x, + 0.054957x, c -0.164872 
Yl, Y,, Xl, x2, *3 30 

**Iteration 0: 
Current best outer approximation point in y-space: 
y” = (0.000000, 0.000000)‘, 
F( y”) = y; * y; = 0.000000, 
x0 = (0.0, 0.0, O.O)=, to = 0.164872 
-y; i-&(x”) = 0.040000, -y; +f2(xo) = 0.164872, g(x”) = 0.500000 
Cutting planes: 
I,(y) = -y2 + 0.164872 =s 0, 
I,,( y, x) = -4.0x, - 2.0x2 - 1.333333x, + 0.5 s 0 

**Iteration 1: 
Current best outer approximation point in y-space: 
y’ = (0.000000, 100.000000)‘, 
F( y’) = 0.000000, 
x1 = (0.104545, 0.0, O.O)=, t’ = 0.081818 
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-y; + fl(x’) = 0.092748, -y; + f2(x1) = -99.816958, g(x’) = 0.092748 
Cutting planes: 
Zl( y) = -0.909091yi + 0.081818 G 0, 
L,(y, x) = -y, + 0.609091x, + 1.218182~~ + 1,827273x, + 0.029070 6 0 

**Iteration 2: 
Current best outer approximation point in y-space: 
y2 = (0.090000, 0.164872)T, 
F( y’) = 0.014838, 
x2 = (0.115892, 0.008319, 0.000000)‘, t2 = 0.019793 
-y; + &(x2) = 0.020576, -y; + f-(x’) = 0.021030, g(n*) = 0.034206 
Cutting planes: 
Z,(y) = -0.960414~~ + 0.178139 d 0, 
L,(y, x) = -3.759897~~ - 1.879948~~ - 1.253299x, + 0.485588 ~0 
. . . 

This problem was solved after 10 iterations. 
Optimal solution of the concave minimization problem in y-space: 

y* = (0.108354, 0.187606)=, 

Optimal solution of the original convex multiplicative programming problem: 

x* = (0.129171, 0.000000, 0.000000)=, 

Optimal function value: 0.020328. 
The maximal number of vertices of a polytope in iw2 generated throughout the 
algorithm was 4. 

A set of randomly generated problems was used to test the above algorithms. The 
test runs were performed on an IBM-PS2 computer, Model1 80, using codes 
written in FORTRAN 77. The test problems are of following three types. 

Type 1: 

min (*TX + &)*(a$ + p2) 
s.t. Axcb 

x30. 

Type 2: 

min fi (4 . f2(4 
s.t. Axab 

X20 

with 
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Type 3: 

min fl(4 .82 (x> s.t. AxGb 
g,(x) s 0, i = 1,2,3 
X20 

with 

f,(x) = (0.2 + g ixJ2 , f2(x) = 0.1 exp(0.5 + i: :) , 
i=l 

g,(x)= .,+i -T--x, 
i-l 1.5 

t=2 1 
-0.5, g,(x)=(-2+i: f?)‘-D.,. 

2=1 

g&) = -x1 - L,, + 1 . 

The (m x n)-matrix A, m-vector b (for Types l-3) and the n-vectors cy,, (Y, and 
numbers pl, & (for Type 1) were generated by a random number generator 
similar to the one described in Horst and Thoai (1989). Computational results on 
some typical problems are given in Tables I-III. It is worth noting that for all test 
problems the number of vertices of the polytopes Sk is very small and hence the 
vertex calculation performed by the method of Horst-Thoai-Vries (1988) only 
requires a negligible amount of time (approximately 1% of CPU-time). 

For all problems we have taken x = -yz = lo6 to construct a first cube So c rWl. 
For k s 10, the cut Ik( y) < 0 was constructed whenever a vertex z’ of the feasible 
set of problem (LP,) was found with (Byk - b)‘z’ 2 min(0.1, tk} > 0, and there- 
after whenever (Byk - b)*z’ 2 min(0.4, tk} > 0. (Recall that tk denotes the opti- 
mal value of problem (LP,)). The algorithms terminated whenever tk G lo-! 

Table I. Computational results on problems of Type 1 

Problem m n Number of Maximal number of vertices CPU-time 
IlO. iterations of a polytope S” (sec.) 

1 10 20 9 8 1.85 
2 20 20 16 10 3.65 
3 22 20 14 9 4.05 
4 20 30 16 10 5.04 
5 35 50 20 11 19.88 
6 45 60 26 12 81.22 
7 45 100 30 14 240.50 
8 60 100 30 13 291.12 
9 70 100 30 13 511.38 

10 70 120 31 16 560.75 
11 100 100 32 15 635.06 
12 102 150 40 16 2823.13 
13 102 190 40 16 3187.93 
14 72 199 45 20 2298.88 
15 110 199 49 16 8068.84 
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Table II. Computational results on problems of Type 2 

Problem m n Number of Maximal number of vertices Number of cuts CPU-time 
no. iterations of a polytope 5’ L(Y,X)~O (sec.) 

1 10 20 6 4 1 2.03 
2 20 20 18 14 14 20.02 
3 22 20 36 17 32 27.32 
4 20 30 46 15 15 44.69 
5 35 50 25 14 18 119.50 
6 45 60 22 11 15 278.01 
7 45 100 47 20 15 480.43 
8 60 100 32 14 17 1221.19 
9 70 100 43 47 19 1972.87 

10 70 120 38 23 19 1948.81 

Table III. Computational results on problems of Type 3 

Problem m n Number of Maximal number of vertices CF CG CPU-time 
no. iterations of a polytope S” (sec.) 

1 5 5 29 7 10 6 4.04 
2 5 10 33 7 13 9 8.44 
3 10 20 42 13 15 5 13.47 
4 20 30 78 16 15 6 79.15 
5 30 50 75 16 18 8 270.06 
6 40 80 38 14 8 5 637.82 
7 50 80 48 16 11 6 1609.75 
8 50 100 97 15 28 6 1902.59 
9 20 120 71 24 18 4 335.85 

10 40 120 43 13 10 6 1510.81 

Notation: 
CF: Number of cuts L,(y, x) s 0 constructed according to the convex constraints -yi + J(n) s 0, 
i = 1,2. 
CG : Number of cuts L,( y, x) s 0 constructed according to g(x) S 0. 

Since the feasible set of problems of Type 2 is polyhedral, the cuts Lk( y, x) d 0 
were constructed according to the convex constraints -yj + h(x) < 0, i = 1,2. 

For solving problems of Type 3, Algorithm 3 was slightly modified that at each 
iteration k the Operation k.4 (construction of the cut L,(y, X) c 0) is only 
performed for the case tk d 10e6 and ( yk, x”) @a. 

6. A Generalized Convex Multiplicative Programming Problem 

The algorithms in the previous sections can immediately be applied for solving the 
following generalized convex multiplicative programming problem, denoted by 
(GMP). 4 

(GMP) s.t. g,(x)<O, i=l,. . . ,m 
X20 
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wherefi, (i=l,. .,q) andg,, (i=l,.. , m) are convex functions over LV and 
fi(x) > F > 0 for i = 1, . . . , 4. 

Defining g(x) =max(g,(x): i = 1,. , I , m} and using q additional variables 
Yl,..‘, y4 we transform (GMP) into 

(6.1) 

s.t. g(x) GO 

(GAP) -yi+&(x)SO, (i=l,...,q) 

x20 

Y,Z&> 0, (i= 1,. . . ) q). 

The master problem according to (GAP) has then the form 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(GCP) min 1 fi yi: y EDCR’) 

with 

D : = {y B 0: (3x 2 0) such that (6.2)-(6.5) are fulfilled} . (6.6) 

While solving Problem (GCP) a method for the calculation of the sets V(Sk) in 
Rq is required. As mentioned in Section 2, the methods discussed in Horst et al. 
(1988) can be efficiently applied for q s 20. 
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